Laser milling: Pulse duration effects on surface integrity

Author:

Petkov P V,Dimov S S,Minev R M,Pham D T

Abstract

Laser milling of engineering materials is a viable alternative to conventional methods for machining complex microcomponents. The laser source employed to perform such microstructuring has a direct impact on achievable surface integrity. At the same time, the trade-offs between high removal rates and the resulting surface integrity should be taken into account when selecting the most appropriate ablation regime for performing laser milling. In this paper the effects of pulse duration on surface quality and material microstructure are investigated when ablating a material commonly used for manufacturing microtooling inserts. For both micro- and nanosecond laser regimes, it was estimated that the heat-affected zone on the processed surface is within 50 μm. When performing ultra-short pulsed laser ablation, the effects of heat transfer are not as evident as they are after processing with longer laser pulse durations. Although some heat is dissipated into the bulk when working in pico- and femtosecond regimes it is not sufficient to trigger significant structural changes.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Reference15 articles.

1. Lasertech GmbH.Presentations, operating manual, Gildemeister Lasertec GmbH, Tirolerstrasse 85, D 87459 Pfronten, Germany1999.

2. Fraunhofer Institut Lasertechnik (ILT) website: http://www.ilt.fhg.de/eng/lasertypen.html, Last visited: 17.01.06.

3. A review of ultrashort pulsed laser ablation of materials

4. Femtosecond, picosecond and nanosecond laser ablation of solids

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3