Fuzzy-neural-network-based fluctuation smoothing rule for reducing the cycle times of jobs with various priorities in a wafer fabrication plant: A simulation study

Author:

Chen T1

Affiliation:

1. Department of Industrial Engineering and Systems Management, Feng Chia University, 100 Wenhwa Road, Seatwen, Taichung City, Taiwan, Republic of China,

Abstract

This paper presents a fuzzy-neural-network-based fluctuation smoothing rule to further improve the performance of scheduling jobs with various priorities in a wafer fabrication plant. The fuzzy system is modified from the well-known fluctuation smoothing policy for a mean cycle time (FSMCT) rule with three innovative treatments. First, the remaining cycle time of a job is estimated by applying an existing fuzzy-neural-network-based approach to improve the estimation accuracy. Second, the components of the FSMCT rule are normalized to balance their importance. Finally, the division operator is applied instead of the traditional subtraction operator in order to magnify the difference in the slack and to enhance the responsiveness of the FSMCT rule. To evaluate the effectiveness of the proposed methodology, production simulation is applied to generate some test data. According to the experimental results, the proposed methodology outperforms six existing approaches in the reduction of the average cycle times. In addition, the new rule is shown to be a Pareto optimal solution for scheduling jobs in a semiconductor manufacturing plant.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3