Lubrication regime transitions at the piston ring-cylinder liner interface

Author:

Bolander N. W.1,Steenwyk B. D.1,Sadeghi F1,Gerber G. R.2

Affiliation:

1. Purdue University School of Mechanical Engineering West Lafayette, IN, USA

2. Caterpillar Inc. Lafayatte, IN, USA

Abstract

An experimental apparatus and an analytical model have been developed to investigate and determine the lubrication condition and frictional losses at the interface between a piston ring and cylinder liner. In order to obtain a solution for the lubrication condition between the piston ring and cylinder liner, the system of Reynolds and film thickness equations subject to boundary conditions were simultaneously solved. The effects of boundary and mixed lubrication conditions were implemented using the Greenwood-Tripp stochastic approach. The Elrod cavitation algorithm was used to investigate the effects of fluid rupture and reformation at the top and bottom dead centres. The experimental results indicate that the piston ring and liner experience all the different lubrication regimes (i.e. boundary, mixed, and hydro-dynamic lubrication) during a stroke. A comparison between experimental and analytical results indicated that they are in good agreement and the analytical model developed for this study can capture the different lubrication regimes that the piston ring and liner experience.

Publisher

SAGE Publications

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3