Measuring the mechanical properties of human skin in vivo using digital image correlation and finite element modelling

Author:

Evans S L1,Holt C A1

Affiliation:

1. School of Engineering, Cardiff University, UK

Abstract

The mechanical properties of the skin are important in many applications, but are not well understood. This paper presents a method for measuring the mechanical properties of human skin in vivo using digital image correlation, with a finite element model that was used to optimize the material properties to obtain the best match with the model data. The skin was modelled as an Ogden hyperelastic membrane, with a tension field wrinkling model and an initial stretch identified as an additional material parameter, and the boundary conditions were the measured load and the displacements around the edge of the region of interest. Fast, reliable convergence was obtained using a Hager–Zhang non-linear conjugate gradient solver. A stochastic optimization procedure was used to identify the material parameters. Good estimates of the material parameters could be obtained from the displacement field at a single time point. Typical material parameters were μ = 10 Pa, α = 26, and an initial strain of 0.2. These parameters were not unique; the stochastic optimization procedure gave good global convergence and an indication of the overall uncertainty in the identification of the results. It is argued that the use of the DIC technique, which generates very large amounts of data, also gave a clearer picture of the overall uncertainty.

Publisher

SAGE Publications

Subject

Applied Mathematics,Mechanical Engineering,Mechanics of Materials,Modeling and Simulation

Cited by 107 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3