In vivo viscoelastic properties of cetacean integument: an experimental characterization

Author:

Yang Dory Y.1,Shorter K. Alex1ORCID,Moore Michael2,Rocho‐Levine Julie3,Wells Randall S.4ORCID,Barton Kira1,Johnson Mark5

Affiliation:

1. Department of Mechanical Engineering University of Michigan Ann Arbor Michigan

2. Biology Department Woods Hole Oceanographic Institution Woods Hole Massachusetts

3. Dolphin Quest Oahu Honolulu Hawaii

4. Chicago Zoological Society's Sarasota Dolphin Research Program, c/o Mote Marine Laboratory Sarasota Florida

5. Zoophysiology University of Aarhus Aarhus Denmark

Abstract

AbstractSuction cups are commonly used to attach biologging tags to cetaceans, and interact mechanically with compliant integument, an organ primarily composed of skin and blubber. However, the impact of compliance on suction cup performance is difficult to predict because knowledge about in vivo integument mechanics is lacking. Here, an experimental approach is used to investigate the mechanical properties of common bottlenose dolphin (Tursiops truncatus) integument using a custom instrument, the static suction cup (SSCup), to collect data from both trained dolphins and wild individuals (n = 17) during a static pose. Three loading profiles were applied at three sites to quantify nonlinear stiffness, hysteresis, and creep. The site at the dorsal fin insertion exhibited the highest stiffness, while sites posterior to the blowhole and above the pectoral fin showed greater energy dissipation during cyclic loading. Viscoelastic behavior was observed across all sites. Suction cup performance on a surrogate material with broadly similar compliance showed reduced performance compared to cups on rigid acrylic: the maximum applied force at detachment on acrylic (50 N) was twice as large as the compliant substrate (25 N). Site‐dependent compliance of integument may lead to varying performance of suction cups as an attachment method for tags.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3