Compressor blade leading edges in subsonic compressible flow

Author:

Tain L1,Cumpsty N. A.1

Affiliation:

1. University of Cambridge Whittle Laboratory, Department of Engineering UK

Abstract

The flow around the leading edge of a compressor blade is interesting and important because there is such a strong interaction between the viscous boundary layer flow and the inviscid flow around it. As the velocity of the inviscid flow just outside the boundary layer is increased from subsonic to supersonic, the type of viscous-inviscid interaction changes; this has important effects on the boundary layer downstream and thus on the performance of the aerofoil or blade. An investigation has been undertaken of the flow in the immediate vicinity of a simulated compressor blade leading edge for a range of inlet Mach numbers from 0.6 to 0.95. The two-dimensional aerofoil used has a circular leading edge on the front of a flat aerofoil. The incidence, Reynolds number and level of free-stream turbulence have been varied. Measurements include the static pressure around the leading edge and downstream and the boundary layer profile far enough downstream for the leading edge bubble to have reattached. Schlieren pictures were also obtained. The flow around the leading edge becomes supersonic when the inlet Mach number is 0.7 for the zero-incidence case; for an inlet Mach number of 0.95 the peak Mach number was approximately 1.7. The pattern of flow around the leading edge alters as the Mach number is increased, and at the highest Mach number tested here the laminar separation bubble is removed. Positive incidence, raised free-stream turbulence or increased Reynolds number at intermediate inlet Mach numbers tended to promote flow patterns similar to those seen at the highest inlet Mach number. Both increased free-stream turbulence and increased Reynolds number, for the same Mach number and incidence, produced thinner shear layers including a thinner boundary layer well downstream. The measurements were supported by calculations using the MSES code (the single aerofoil version of the MISES code); the calculations were helpful in interpreting the measured results and were demonstrated to be accurate enough to be used for design purposes.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3