The Effect of Adding Roughness and Thickness to a Transonic Axial Compressor Rotor

Author:

Suder K. L.1,Chima R. V.1,Strazisar A. J.1,Roberts W. B.2

Affiliation:

1. NASA-Lewis Research Center, Cleveland, OH 44135

2. Flow Application Research and Sermatech International Inc., Fremont, CA 94539

Abstract

The performance deterioration of a high-speed axial compressor rotor due to surface roughness and airfoil thickness variations is reported. A 0.025 mm (0.001 in.) thick rough coating with a surface finish of 2.54–3.18 rms μm (100–125 rms μin.) is applied to the pressure and suction surface of the rotor blades. Coating both surfaces increases the leading edge thickness by 10 percent at the hub and 20 percent at the tip. Application of this coating results in a loss in efficiency of 6 points and a 9 percent reduction in the pressure ratio across the rotor at an operating condition near the design point. To separate the effects of thickness and roughness, a smooth coating of equal thickness is also applied to the blade. The smooth coating surface finish is 0.254–0.508 rms μm (10–20 rms μin.), compared to the bare metal blade surface finish of 0.508 rms pm (20 rms μin.). The smooth coating results in approximately half of the performance deterioration found from the rough coating. Both coatings are then applied to different portions of the blade surface to determine which portions of the airfoil are most sensitive to thickness/roughness variations. Aerodynamic performance measurements are presented for a number of coating configurations at 60, 80, and 100 percent of design speed. The results indicate that thickness/roughness over the first 2 percent of blade chord accounts for virtually all of the observed performance degradation for the smooth coating, compared to about 70 percent of the observed performance degradation for the rough coating. The performance deterioration is investigated in more detail at design speed using laser anemometer measurements as well as predictions generated by a quasi-three-dimensional Navier–Stokes flow solver, which includes a surface roughness model. Measurements and analysis are performed on the baseline blade and the full-coverage smooth and rough coatings. The results indicate that adding roughness at the blade leading edge causes a thickening of the blade boundary layers. The interaction between the rotor passage shock and the thickened suction surface boundary layer then results in an increase in blockage, which reduces the diffusion level in the rear half of the blade passage, thus reducing the aerodynamic performance of the rotor.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 105 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3