Affiliation:
1. National Huwei Institute of Technology Department of Automation Engineering Yunlin, Taiwan
2. National Cheng Kung University Department of Mechanical Engineering Tainan, Taiwan
Abstract
The geometry design and machining of blades for axial-flow fans are important issues because the twisted profile and flowfield of blades are complicated. The rapid design of a blade that performs well and satisfies machining requirements is one of the goals in designing fluid machinery blades. In this study, an integrated approach combining computational fluid dynamics (CFD), an artificial neural network, an optimization method and a machining method is proposed to design a three-dimensional blade for an axial-flow fan. From the machining point of view, the three-dimensional surface geometry of a fan blade can be defined as the swept surface of the tool path created by using the generated machining method. By taking advantage of its powerful learning capability, a back-propagation artificial neural network is used to set up the flowfield models and to forecast the flow performance of the axial-flow fan. The desired optimal blade geometry is obtained by using a complex optimization method.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献