Geometric tolerances: A new application for line geometry and screws

Author:

Davidson J K1,Shah J J1

Affiliation:

1. Arizona State University Department of Mechanical and Aerospace Engineering Tempe, Arizona, USA

Abstract

A new mathematical model is introduced for the tolerances of cylindrical surfaces. The model is compatible with the ISO/ANSI/ASME standard for geometric tolerances. Central to the new model is a Tolerance-Map®†, a hypothetical volume of points that corresponds to all possible locations and variations of a segment of a line (the axis) that can arise from tolerances on size, location and orientation of the cylindrical surface. Each axis in a tolerance zone will be represented with the six Plücker coordinates. Cylindrical surfaces in a tolerance zone for the same hole can then be treated by attaching a size tolerance to each of the lines, thereby forming a screw. Relationships for the content of line solids for a tolerance zone are developed to correspond to the variations of locations. These are then used to obtain a measure for the increment in cost when a more refined tolerance is specified. This model is one part of a bilevel model that is under development for geometric tolerances.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Analysis of Assembly Tolerance Based on Assembly Constraint Information Model;Mathematical Problems in Engineering;2021-08-09

2. A new approach of surfaces registration considering form errors for precise assembly;Assembly Automation;2020-10-16

3. A method for identification and sequence optimisation of geometry spot welds in a digital twin context;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2019-06-11

4. Statistical Tolerance Analysis With Sensitivities Established From Tolerance-Maps and Deviation Spaces;Journal of Computing and Information Science in Engineering;2019-05-16

5. SURVEY OF GEOMETRIC TOLERANCE ABOUT THREE-DIMENSIONAL TECHNOLOGIES AND ITS APPLICATION FOR PUBLIC WORKS;Journal of Japan Society of Civil Engineers, Ser. F4 (Construction and Management);2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3