Statistical Tolerance Analysis With Sensitivities Established From Tolerance-Maps and Deviation Spaces

Author:

Chitale Aniket N.1,Davidson J. K.1,Shah Jami J.2

Affiliation:

1. Design Automation Laboratory, Department of Mechanical and Aerospace Engineering, Arizona State University, Tempe, AZ 85287-6106 e-mail:

2. Honda Professor of Engineering Design, Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210 e-mail:

Abstract

Math models aid designers in assessing relationships between tolerances that contribute to variations of a dependent dimension that must be controlled to achieve some design function at a target (functional) feature. The Tolerance-Maps© (T-Maps©) model for representing limits to allowable manufacturing variations is applied to identify the sensitivity of a dependent dimension to each contributing tolerance of the relationship. For each contributing feature and tolerances specified on it, the appropriate T-Map is chosen from a library of T-Maps, each represented in its own respective local reference frame. Each chosen T-Map is then transformed to the coordinate frame at the target feature, and the accumulation T-Map of these is formed with the Minkowski sum. The shape of a functional T-Map/deviation space is circumscribed (fitted) to this accumulation map. Since fitting is accomplished numerically by intersecting geometric shapes, T-Maps/deviation spaces are constructed with linear half-spaces. The sensitivity for each tolerance-and-feature combination is determined by perturbing the tolerance, refitting the functional shape to the modified accumulation map, and forming a ratio of the increment of functional tolerance to the perturbation. Taking tolerance-feature combinations one by one, sensitivities for an entire stack can be built. For certain loop equations, the same sensitivities result by fitting the functional shape to the T-Map/deviation space for each feature, without a Minkowski sum, and forming the overall result as a scalar sum. Sensitivities are used to optimize tolerance assignments by identifying the tolerances that most strongly influence the dependent dimension at the target feature. Form variations are not included in the analysis.

Funder

Digital Manufacturing and Design Innovation Institute

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Reference43 articles.

1. A Comparative Study of Tolerance Analysis Methods;Shen;ASME Trans. J. Comput. Inf. Sci. Eng.,2005

2. A New Mathematical Model for Geometric Tolerances as Applied to Round Faces;Davidson;ASME J. Mech. Des.,2002

3. A New Mathematical Model for Geometric Tolerances as Applied to Polygonal Faces;Mujezinovič;ASME J. Mech. Des.,2004

4. Clearance Space and Deviation Space;Giordano,1993

5. Mathematical Representation of Tolerance Zones;Giordano,1999

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3