Paper 4: Synchronous Whirling of a Shaft within a Radially Flexible Annulus Having Small Radial Clearance

Author:

Black H. F.1

Affiliation:

1. Department of Mechanical Engineering, Heriot-Watt University

Abstract

Where it is intended to run the shaft at high speed—that is, above the first critical speed—contact between the shaft and annulus may take place in running up to speed just below the critical speed if the mass eccentricity is sufficient in relation to the damping. It is shown that such contact can radically alter the high-speed behaviour of the shaft over a speed range possibly extending to several times the critical speed. In this range, synchronous whirling can take place at a radius exceeding the annular clearance. The whirl radius in this condition may attain between ten and one hundred times the magnitude expected in normal high-speed running at the same speed. The dependence of magnitude and range of this type of whirling on annulus to shaft stiffness ratio, damping and surface friction is examined: the conditions for stability of equilibrium are theoretically examined. The essential features of the theory have been tested on a laboratory rig; some typical results are given. There is some evidence that this type of whirling can occur in centrifugal pumps, the cumulative effects leading to failure.

Publisher

SAGE Publications

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3