Audible-frequency stiffness of a primary suspension isolator on a high-speed tilting bogie

Author:

Kari L1

Affiliation:

1. Royal Institute of Technology The Marcus Wallenberg Laboratory for Sound and Vibration Research/Department of Vehicle Engineering 100 44 Stockholm, Sweden

Abstract

The preload-dependent dynamic stiffness of a primary suspension isolator on a high-speed tilting bogie is examined via measurements and modelling within an audible frequency range. The stiffness is found to depend strongly on both frequency and preload. The former displays some resonance phenomena, such as stiffness peaks and troughs, while the latter exhibits a steep low-frequency stiffness increase in addition to an anti-resonance peak shifting to a higher frequency with increased preload. The problems of simultaneously modelling the preload and frequency dependence are removed by adopting a frequency-dependent waveguide approach, assuming incompressible rubber with an Abel operator kernel as its shear relaxation function. The preload dependence is modelled by a non-linear shape factor based approach, using a globally equivalent preload configuration. All the translational stiffnesses are modelled, including the vertical, longitudinal and lateral directions, and the vertical stiffness results are compared to those of measurements in a specially designed test rig. Good agreement is obtained for a wide frequency domain-covering 100-600 Hz-using a minimum number of parameters and for a wide preload domain-from vanishing to the maximum in service, 90 kN.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3