Artificial neural network as a predictive tool for emissions from heavy-duty diesel vehicles in Southern California

Author:

Hashemi N1,Clark N. N.2

Affiliation:

1. Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, USA

2. Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia, USA

Abstract

An artificial neural network (ANN) was trained on chassis dynamometer data and used to predict the oxides of nitrogen (NO x), carbon dioxide (CO2), hydrocarbons (HC), and carbon monoxide (CO) emitted from heavy-duty diesel vehicles. Axle speed, torque, their derivatives in different time steps, and two novel variables that defined speed variability over 150 seconds were defined as the inputs for the ANN. The novel variables were used to assist in predicting off-cycle emissions. Each species was considered individually as an output of the ANN. The ANN was trained on the Highway cycle and applied to the City/Suburban Heavy Vehicle Route (CSHVR) and Urban Dynamometer Driving Schedule (UDDS) with four different sets of inputs to predict the emissions for these vehicles. The research showed acceptable prediction results for the ANN, even for the one trained with only eight inputs of speed, torque, their first and second derivatives at one second, and two variables related to the speed pattern over the last 150 seconds. However, off-cycle operation (leading to high NO x emissions) was still difficult to model. The results showed an average accuracy of 0.97 for CO2, 0.89 for NO x, 0.70 for CO, and 0.48 for HC over the course of the CSHVR, Highway, and UDDS.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3