Supplementation of deep neural networks with simplified physics-based features to increase accuracy of plate fundamental frequency predictions

Author:

Clinkinbeard Nicholus RORCID,Hashemi Nicole NORCID

Abstract

Abstract To improve predictive machine learning-based models limited by sparse data, supplemental physics-related features are introduced into a deep neural network (DNN). While some approaches inject physics through differential equations or numerical simulation, improvements are possible using simplified relationships from engineering references. To evaluate this hypothesis, thin rectangular plates were simulated to generate training datasets. With plate dimensions and material properties as input features and fundamental natural frequency as the output, predictive performance of a data-driven DNN-based model is compared with models using supplemental inputs, such as modulus of rigidity. To evaluate model accuracy improvements, these additional features are injected into various DNN layers, and the network is trained with four different dataset sizes. When evaluated against independent data of similar features to the training sets, supplementation provides no statistically-significant prediction error reduction. However, notable accuracy gains occur when independent test data is of material and dimensions different from the original training set. Furthermore, when physics-enhanced data is injected into multiple DNN layers, reductions in mean error from 33.2% to 19.6%, 34.9% to 19.9%, 35.8% to 22.4%, and 43.0% to 28.4% are achieved for dataset sizes of 261, 117, 60, and 30, respectively, demonstrating potential for generalizability using a data supplementation approach. Additionally, when compared with other methods—such as linear regression and support vector machine (SVM) approaches—the physics-enhanced DNN demonstrates an order of magnitude reduction in percentage error for dataset sizes of 261, 117, and 60 and a 30% reduction for a size of 30 when compared with a cubic SVM model independently tested with data divergent from the training and validation set.

Funder

National Science Foundation

Publisher

IOP Publishing

Reference25 articles.

1. Machine learning in acoustics: theory and applications;Bianco;J. Acoust. Soc. Am.,2019

2. Artificial neural network as a predictive tool for emissions from heavy-duty diesel vehicles in Southern California;Hashemi;Int. J. Engine Res.,2007

3. Machine learning-assisted E-jet printing for manufacturing of organic flexible electronics;Shirsavar;Biosensors and Bioelectronics,2022

4. Discourse analysis of Covid-19 in persian twitter social networks using graph mining and natural language processing;Shokrollahi,2021

5. Predictive learning in the presence of heterogeneity and limited;Anuj,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3