Experimental metrics for identifying origins of combustion variability during spark-assisted compression ignition

Author:

Reuss D L1,Kuo T-W1,Silvas G1,Natarajan V2,Sick V2

Affiliation:

1. Powertrain Systems Research Laboratory, General Motors R & D Center, Warren, Michigan, USA

2. University of Michigan, Ann Arbor, Michigan, USA

Abstract

Spark-assisted compression ignition, SACI, can be used to control the combustion phasing of compression-ignition gasoline engines. However, implementation of this technique can be confounded by cyclic variability. The purpose of this paper is to define experimental metrics that describe the SACI process and to demonstrate the use of these metrics for identifying the source(s) of cyclic variability during the SACI process. This study focused on a light load condition (7 mg/cycle, 200 kPa i.m.e.p.), where spray-guided direct fuel injection with spark ignition and an exhaust-rebreathing strategy was employed to achieve flame propagation, which led to compression ignition. This study employed a combination of measurements including pressure-based heat-release analysis, spark-discharge voltage/current measurements, and cycle-resolved combustion imaging. Based on these measurements, four distinct combustion periods were identified; namely, the spark discharge, the early kernel growth (EKG), flame propagation, and the compression ignition periods. Metrics were defined to characterize each period and used to identify the contribution of each period to the cyclic variability of the main heat release. For the light load condition studied here, the EKG period had the largest effect on the crank angle (CA) position of 50 per cent mass burned, CA50. The spark-discharge event may affect CA50 indirectly through its influence on EKG. However, this could not be definitively assessed here since the camera was incapable of recording both the spark-discharge event and the flame images during cycles of the same tests.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3