Affiliation:
1. GeneralMotors Research and Development Powertrain Systems Research Laboratory Warren, Michigan, USA
Abstract
A recently developed spark emission spec-troscopy technique has been used to measure the effects of fuel injection timing, spark timing and intake swirl level on the individual-cycle fuel concentration at the spark gap in a wall-guided spark ignited direct injection (SIDI) engine. The fuel-concentration measurements were made simultaneously with measurements of individual-cycle spark discharge energy and cylinder pressure. Endoscopic imaging of the fuel spray and high-speed imaging of combustion (both broadband and spectrally resolved) augment these quantitative data. For optimum engine operation, the fuel-air equivalence ratio at the spark gap just after spark breakdown is rich on average (〈φ〉 ≈1.4–1.5) and varies widely from cycle to cycle (∼25 per cent). The evolution with crank angle of the mean equivalence ratio and its cycle-to-cycle fluctuations are correlated with the cylinder pressure, heat release and imaging data to provide insights into fuel transport and mixture preparation that are important to understanding and optimizing ignition and combustion in SIDI engines. For example, causes of misfires and partial burns have been determined.
Subject
Mechanical Engineering,Ocean Engineering,Aerospace Engineering,Automotive Engineering
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献