Developments in turbomachinery internal air systems

Author:

Chew J W1

Affiliation:

1. Faculty of Engineering and Physical Sciences, University of Surrey, Guildford GU2 7XH, UK.,

Abstract

Development of turbomachinery technology, including aircraft propulsion, has been an outstanding achievement of the last 50 years and, as illustrated by Ruffles in his paper ‘The future of aircraft propulsion’ (2000), further advances are expected in the future. Here, one particular aspect of turbomachinery technology, the internal air system is considered. An article by Dixon et al., published by the Institution of Mechanical Engineers in 2004, shows how computational modelling has become central to the design process and the importance of the internal air system in engine design. Bayley and Conway's 1964 paper, motivated by shortcomings in industrial design methods and understanding, was one of the first investigations of flow and heat transfer in rotating disc cavities typical of internal air systems. During the study, a theoretical or numerical treatment was considered intractable and so experiments were undertaken. These paved the way for an extensive research in this area. Today, the use of computational fluid dynamics (CFD) in industry for internal air flow prediction is commonplace. In this review, it is shown that the unshrouded disc cavity flow considered by Bayley and Conway is still challenging for modern CFD methods, and so the experimental data remain of interest to researchers in the field.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advanced Modeling of Flow and Heat Transfer in Rotating Disk Cavities Using Open-Source Computational Fluid Dynamics;Journal of Engineering for Gas Turbines and Power;2024-01-12

2. Aerodynamic impact of hub and shroud leakage flow on an axial turbine stage;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2015-07-24

3. Computational fluid dynamic analysis of a supercritical CO2 based natural circulation loop with end heat exchangers;International Journal of Advances in Engineering Sciences and Applied Mathematics;2012-06-05

4. Computational fluid dynamics and virtual aeroengine modelling;Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science;2009-09-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3