Robot-assisted endoscopic exploration of the spinal cord

Author:

Ascari L1,Stefanini C2,Bertocchi U2,Dario P3

Affiliation:

1. Centre of Excellence for Information, Communication and Perception Engineering (CEIICP), Scuola Superiore Sant'Anna, Pisa, Italy

2. CRIM Lab, Scuola Superiore Sant'Anna, Pisa, Italy

3. CRIM and ARTS Lab, Scuola Superiore Sant'Anna, Pisa, Italy

Abstract

This work presents the design and development of an integrated image-guided robot-assisted endoscopic system for the safe navigation within the spinal subarachnoid space, providing the surgeon with the direct vision of the structures (i.e. spinal cord, roots, vessels) and the possibility of performing some particularly useful operations, like local electrostimulation of nerve roots. The modelling, micro-fabrication, fluidic sustentation, and cable-based actuation system of a steerable tip for a multilumen flexible catheter is described; the hierarchical control system shared between the surgeon and the computer, and based on machine vision techniques and a simple but effective three-dimensional reconstruction is detailed. The Blind Expected Perception sensory-motor scheme is proposed in robot-assited endoscopy. Results from in vitro, ex vivo, and in vivo experiments show that the described model can accurately predict the shape of the catheter given the tension distribution on the cables, that the proposed actuation system can assure smooth and precise control of the catheter tip, that the fluidic sustentation of the catheter is essential in in vivo navigation, and that the proposed rear view mirror interface to show non-visible obstacles is appropriate; in conclusion, the results proved the validity of the proposed solution to develop an intrinsically safe robotic system for navigation and intervention in a narrow and challenging environment such as the spinal subarachnoid space.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3