Design of Compliant Three-Dimensional Printed Surgical End-Effectors for Robotic Lumbar Discectomy

Author:

Johnson Benjamin V.1,Gong Zekun1,Cole Brian A.2,Cappelleri David J.1

Affiliation:

1. School of Mechanical Engineering, Purdue University, West Lafayette, IN 47906 e-mail:

2. Englewood Orthopedic Associates, Englewood, NJ 07631 e-mail:

Abstract

In this paper, the design of compliant three-dimensional (3D) printed surgical end-effectors for robotic lumbar discectomy is presented. Discectomy is the surgery to remove the herniated disk material that is pressing on a nerve root or spinal cord. This surgery is performed to relieve pain or numbness caused by the pressure on the nerve. The limited workspace of the spine (<27 cm3) results in challenging design requirements for surgical instruments. We propose a new cannula-based robotic lumbar discectomy procedure that can accommodate multiple articulated tools in the workspace at the same time and can be controlled teleoperatively by the surgeon. We present designs for two instruments for this proposed system: an articulated nerve retractor and an articulated grasper. The end-effectors of each are 3D printed with multiple materials, with flexible links acting as joints of the mechanism. These flexible links are actuated by cables which provide sufficient articulation and manipulation forces in the surgical workspace. The end-effector's articulated flexible joint kinematics is modeled and tested for range of motion capabilities. The retraction forces for the nerve retractor and the grasping force for the grasper are also experimentally tested and verified to meet all the design requirements. Additionally, fatigue testing of the flexible joint is presented and teleoperated control for the instruments is demonstrated. Finally, conceptual designs for new actuation systems are presented that will enable feasible surgical operations with the enhanced attributes of the designed end-effectors.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3