Injection characteristics of non-swirling and swirling annular liquid sheets

Author:

Ibrahim E A1,McKinney T R1

Affiliation:

1. Mechanical Engineering Department, Tuskegee University, Tuskegee, Alabama, USA

Abstract

A simplified mathematical model, based on body-fitted coordinates, is formulated to study the evolution of non-swirling and swirling liquid sheets emanated from an annular nozzle in a quiescent surrounding medium. The model provides predictions of sheet trajectory, thickness, and velocity at various liquid mass flowrates and liquid-swirler angles. It is found that a non-swirling annular sheet converges towards its centreline and assumes a bell shape as it moves downstream from the nozzle. The bell radius and length are more pronounced at higher liquid mass flowrates. Both the thickness and the stream-wise velocity of the non-swirling annular sheet are reduced with an increase in mass flowrate. The introduction of swirl results in the formation of a diverging hollow-cone sheet. The hollow-cone divergence from its centreline is enhanced by an increase in liquid mass flowrate or liquid-swirler angle. The hollow-cone sheet radius, curvature, and stream-wise velocity increase, whereas its thickness is diminished as a result of increasing the mass flowrate or liquid-swirler angle. The tangential velocity is greater at higher mass flowrates or smaller liquid-swirler angles. The present results are compared with previous studies and conclusions are drawn.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3