Numerical Investigation on Primary Atomization Mechanism of Hollow Cone Swirling Sprays

Author:

Ding Jia-Wei1,Li Guo-Xiu1,Yu Yu-Song1,Li Hong-Meng1

Affiliation:

1. School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China

Abstract

The atomization process of swirling sprays in gas turbine engines has been investigated using a LES-VOF model. With fine grid resolution, the ligament and droplet formation processes are captured in detail. The spray structure of fully developed sprays and the flow field are observed firstly. A central recirculation zone is generated inside the hollow cone section due to the entrainment of air by the liquid sheet and strong turbulent structures promote the breakup of ligaments. At the exit of injector nozzle, surface instability occurs due to disturbance factors. Axial and transverse mode instabilities produce a net-like structure ligament zone. Finally, the generation mechanism of the droplet is analyzed. It is found that the breakup mechanism of ligaments is located at the Raleigh capillary region. Axial symmetry oscillation occurs due to the surface tension force and the capillary waves pinch off from the neck of the ligaments. Secondary breakup and coalescence occur at the “droplet zone,” resulting in a wider distribution curve at the downstream area.

Publisher

Hindawi Limited

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3