Comparison of simulation and practical results for a microelectromechanical systems microturbine module

Author:

Dhariwal R1,Leonard M1,Sriphung C1

Affiliation:

1. School of Engineering and Physical Sciences (EECE Section), Heriot-Watt University, Riccarton, Edinburgh, UK

Abstract

A comparison of simulation and practical results for torque and power measurement have been undertaken for an impulse type of microelectromechanical systems microturbine. The microturbine module having a rotor diameter of just under 4 mm, an inlet channel that is 1 mm wide by 0.5 mm high, using an air drive has been extensively studied over the last few years. The simulation work has been undertaken using commercially available ANSYS and FEMLAB finite-element methods packages. From extensive simulation studies, the levitation of the rotor by using an appropriately shaped stepped base bearing plate on the stator surface was predicted by Flockhart in 1998 in her PhD thesis working under the direction of the principal author of the current paper. Only very recently has it been possible to carry out practical studies on the module to determine parameters such as, speed, torque, power, and especially levitation height. The practical results are in good agreement with the simulation results, bearing in mind that frictional effects were not accounted for, in the simulations. The feasibility of using the module as a microgenerator has been demonstrated by making use of commercially available minimagnets and a power of 1.2 mW was developed at 250 kPa input air pressure. At this value of input air pressure, a rotational speed of 30 000 r/min was obtained and a torque of 0.4 μNm could be produced.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3