An effective experimental method for identifying radiated noise of different angular ranges for the rolling-piston compressor

Author:

Huang Z1,Jiang W1,Zhang H1,Liu C2,Jin H2,Zhou Y2,He J2

Affiliation:

1. State Key Laboratory of Mechanical System and Vibration, Institute of Vibration, Shock, and Noise, Shanghai Jiaotong University, Shanghai, People's Republic of China

2. Shanghai Hitachi Electrical Appliances Corporation Co. Ltd, Shanghai, People's Republic of China

Abstract

In the traditional analysis method of noise signals, it is very difficult to relate the overall noise from compressors to the angular position. The experimental method of separating the overall noise of different angular ranges is carried out at the real conditions. The starting position of the rotary piston is labelled with vane displacement and the test signals are synchronously sampled. Experimental results are analysed through fast Fourier transform method based on different angular ranges, which displays the following useful conclusions. The experiment technology could effectively identify the angular ranges for the frequency bands with prominent noise level; for the experimental rolling-piston compressor, the vibration, and sound pressure level of the discharge process (210–360 angular degrees) are the largest above the frequency 500 Hz. The discharge process is divided into three parts, where the final part contributes a little to the overall noise level when compared with the other two stages. Pressure pulsation is an important source of vibration and noise and its suppression of peak frequencies is the key of low-noise design of the compressor.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3