Experimental and numerical investigations of the tip leakage flow of axial fans with circumferential skewed blades under off-design conditions

Author:

Jin G Y1,Ouyang H1,Wu Y D2,Du Z H1

Affiliation:

1. School of Mechanical Engineering, Shanghai Jiao Tong University, People's Republic of China

2. School of Aeronautics and Astronautics, Shanghai Jiao Tong University, People's Republic of China

Abstract

Experimental and numerical investigations of tip leakage flow of circumferential skewed axial fans were conducted under off-design conditions. Two circumferential skewed fans, with the blade skew angles of 8.3° forward and backward, respectively, and a base fan were investigated in this study. Aerodynamic and aeroacoustic performances were measured. The Navier—Stokes flow simulations were validated experimentally and the key analysis of tip leakage flow was based on computational fluid dynamics results. The simulations show that with a decrease in flowrate, the start of the tip leakage vortex moves towards the leading edge in the chordwise direction and towards the hub in the spanwise direction. These movements are less significant for the forward-skewed blade than for the backward-skewed blade. The strength of the tip leakage vortex decreases along the vortex line. The vortex strength for the forward-skew blade is significantly less than that for the backward-skewed blade. The aeroacoustic source intensity in the tip clearance region is reduced by employing circumferential skewed blades and changes with a change in flowrate in the same manner as the measured sound pressure level. The forward-skewed blade is found to be effective in eliminating noise sources in the tip clearance region and in controlling tip leakage flow to expand the stall-free operation range under off-design conditions.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3