Numerical analysis of laminar natural convection in isosceles triangular enclosures

Author:

Kent E F1

Affiliation:

1. Faculty of Mechanical Engineering, Istanbul Technical University, Inonu Cad. No: 87, Gumussuyu, Istanbul, 34437, Turkey,

Abstract

In this work, a numerical analysis of laminar natural convection in an isosceles triangular enclosure has been performed for two different thermal boundary conditions. In case 1, the base is heated and the two inclined walls are symmetrically cooled, and in case 2, the base is cooled and the two top inclined walls are symmetrically heated. This configuration is encountered in solar engineering applications such as: solar stills that usually have triangular cavities and triangular built-in-storage-type solar water heaters; and heat transfer in attic spaces in both wintertime and summertime conditions. To perform the computational analysis, the finite-volume method is used for the discretization of the governing equations. Base angles varying from 15 to 75° have been used for different Rayleigh numbers ranging from 103 to 105. The effects of the Rayleigh number and aspect ratio on the flow field and heat transfer are analysed. The detailed streamline patterns and temperature distributions are presented. The variation of the mean Nusselt numbers versus Rayleigh numbers for different base angles is given. It is found that the base angle has a drastic influence on the flow field and isotherms for the two cases. For case 1, at small base angles, as the Rayleigh number increases, a multi-cellular flow structure developed inside the enclosure enhances the heat transfer. For case 2, the temperature profiles are always stable and stratified for all Rayleigh numbers and base angles.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3