Elastohydrodynamic lubrication analysis of a functionally graded layered bearing surface, with particular reference to ‘cushion form bearings’ for artificial knee joints

Author:

Virdee S S1,Wang F C1,Xu H2,Jin Z M1

Affiliation:

1. University of Bradford School of Engineering, Design and Technology Bradford, UK

2. , Xi'an Jiaotong University Theory of Lubrication and Bearing Institution Shaanxi, Xi'an, People's Republic of China

Abstract

Elastohydrodynamic lubrication of a functionally graded layered (FGL) bearing surface, whose elastic modulus increases with depth from the bearing surface, was investigated in this study. The finite difference method was employed to solve the Reynolds equation, simultaneously with the elasticity equation of the bearing surface, under circular point contacts. The finite element method was adopted to solve the elasticity equation for the FGL bearing surface. The displacement coefficients thus obtained were used to calculate the elastic deformation of the bearing surface, required for the elastohydrodynamic lubrication analysis. Good agreement of the predicted film thickness and pressure distribution was obtained, between the present method and a previous study for a single layered bearing surface with a uniform elastic modulus. The general numerical methodology was then applied to an FGL bearing surface with both linear and exponential variations in elastic modulus, with particular reference to the ‘cushion form bearing’ for artificial knee joints. The predicted film thickness and pressure distribution were shown to be quite close to those obtained for a single layer under typical operating conditions representative of artificial knee joints, provided that the elastic modulus of the single layer was chosen to be the average elastic modulus of the graded layer.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3