Finite element analysis in spine research

Author:

Fagan M J1,Julian S1,Mohsen A M2

Affiliation:

1. University of Hull Medical Engineering, Department of Engineering Hull, UK

2. Hull Royal Infirmary Department of Orthopaedics and Traumatology Hull, UK

Abstract

Finite element analysis is a widely accepted tool used in many industries and research activities. It allows new designs to be thoroughly ‘tested’ before a prototype is even manufactured, components and systems which cannot readily be experimented upon to be examined, and ‘diagnostic’ investigations to be undertaken. Finite element models are already making an important contribution to our understanding of the spine and its components. Models are being used to reveal the biomechanical function of the spine and its behaviour when healthy, diseased or damaged. They are also providing support in the design and application of spinal instrumentation. The spine is a very complex structure, and many of the models are simplified and idealized because of the complexity and uncertainty in the geometry, material properties and boundary conditions of these problems. This type of modelling simplification is not peculiar to spinal modelling problems. Indeed, the idealization is often a strength when there is such uncertainty and variation between one individual and another, allowing cause-effect relationships to be isolated and fully explored, and the inherent variability of experimental tests to be eliminated. This paper reviews the development of finite element analysis in spinal modelling. It shows how modelling provides a wealth of information on our physiological performance, reduces our dependence on animal and cadaveric experiments and is an invaluable complement to clinical studies. It also leads to the conclusion that, as computing power and software capabilities increase, it is quite conceivable that in the future it will be possible to generate patient-specific models that could be used for patient assessment and even pre- and inter-operative planning.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 87 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3