Compression-induced damage in a muscle cell model in vitro

Author:

Wang Yak-Nam1,Bouten C V C2,Lee D A1,Bader D L1

Affiliation:

1. Medical Engineering Division, Queen Mary, University of London, London, UK

2. Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands

Abstract

Soft tissue breakdown can be initiated at the muscle layer associated with bony prominences, leading to the development of pressure ulcers. Both the magnitude and duration of pressure are important factors in this breakdown process. The present study utilizes a physical model, incorporating C2C12 mouse myoblasts in a homogeneous agarose gel, to examine the damaging effects of prolonged applied pressure. Identical cylindrical cores cut from the agarose/cell suspension were subjected to two separate compressive strains, of 10 and 20 per cent. The strain was applied for time periods ranging from 0.5 to 12 hours, using a specially designed loading apparatus. After each compression period, sections taken from the central horizontal plane of the individual constructs were stained using either haematoxylin and eosin or with the fluorescent probes, Calcein AM and ethidium homodimer-1, and assessed for cell damage. It was found that constructs subjected to the higher strain values demonstrated significantly higher values of non-viable cells for equivalent time points compared to the unstrained constructs. Further analysis on sections using the DNA nick-translation method suggested that this increase was primarily due to apoptosis. These findings imply a relationship between the duration of applied compression and damage to muscle cells seeded in the gel, which was particularly apparent at the strain level of 20 per cent, equivalent to a clinically relevant pressure of 32 mmHg (4.3 kPa). Such an approach might be useful in establishing damage threshold levels at a cellular level.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3