Affiliation:
1. Wolfson School of Mechanical and Manufacturing Engineering, Loughborough University, Loughborough, UK
Abstract
The surface properties of a biomaterial play an essential role in protein adsorption, which in turn determines the cellular response to the adsorbed surface. In order to obtain a surface that would yield favourable protein adsorption for successful cellular response, the surface properties of a biograde stainless steel were modified by CO2 laser treatment. An investigation of the CO2-laser-modified surface properties and the effects thereof on the adsorption of human serum albumin (no-cell adhesive) and human plasma fibronectin (cell adhesive) was conducted. It was found that the thickness of the adsorbed fibronectin layer increased with increasing CO2 laser power density, while the thickness of the adsorbed albumin layer decreased with increasing CO2 laser power density. The surface roughness and wettability characteristics contributed to the observed changes in protein adsorption. The wettability characteristics of the biograde stainless steel were found to be the predominant mechanism governing the observed change in protein adsorption. Since the wettability characteristics of the biograde stainless steel can be modified in an efficient and controllable way with the CO2 laser, it is believed that this work presents a demonstrable alternative to the techniques currently available for enhancing the biocompatibility of biograde stainless steels.
Subject
Mechanical Engineering,General Medicine
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献