Effects of acetabular resurfacing component material and fixation on the strain distribution in the pelvis

Author:

Thompson M S1,Northmore-Ball M D2,Tanner K E3

Affiliation:

1. Lund University Hospital Biomechanics Laboratory, Department of Orthopaedics Lund, Sweden

2. Robert Jones and Agnes Hunt Orthopaedic Hospital Unit for Joint Reconstruction Oswestry, Shropshire, UK

3. University of London IRC in Biomedical Materials, Queen Mary London, UK

Abstract

A 3D finite element (FE) model of an implanted pelvis was developed as part of a project investigating an all-polymer hip resurfacing design. The model was used to compare this novel design with a metal-on-metal design in current use and a metal-on-polymer design typical of early resurfacing implants. The model included forces representing the actions of 22 muscles as well as variable cancellous bone stiffness and variable cortical shell thickness. The hip joint reaction force was applied via contact modelled between the femoral and acetabular components of the resurfacing prosthesis. Five load cases representing time points through the gait cycle were analysed. The effect of varying fixation conditions was also investigated. The highest cancellous bone strain levels were found at mid-stance, not heel-strike. Remote from the acetabulum there was little effect of prosthesis material and fixation upon the von Mises stresses and maximum principal strains. Implant material appeared to have little effect upon cancellous bone strain failure with both bonded and unbonded bone-implant interfaces. The unbonded implants increased stresses in the subchondral bone at the centre of the acetabulum and increased cancellous bone loading, resembling behaviour obtained previously for the intact acetabulum.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Reference30 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3