Oil film measurment in polytetrafluoroethylene-faced thurst pad bearings for hydrogenerator applications

Author:

Dwyer-Joyce R. S.1,Harper P1,Pritchard J1,Drinkwater B. W.2

Affiliation:

1. Department of Mechanical Engineering, University of Sheffield, Sheffield, UK

2. Department of Mechanical Engineering, University of Bristol, Bristol, UK

Abstract

There is a growing trend in the replacement of the babbit facing in thrust pad bearings with a composite polytetrafluoroethylene (PTFE) surface layer. The PTFE-faced bearings have been shown to allow a greater specific pressure, reduce thermal crowning, and, in some cases, negate the need for an oil-lift (jacking) system. These designs of bearing require new methods for the measurement of oil film thickness both to assist in their development and for plant condition monitoring. In this work, an ultrasonic method of oil film measurement is evaluated for this purpose. An ultrasonic transducer is mounted on the back face of the thrust pad. Pulses are generated and transmitted through the pad material, bonding interlayer, and PTFE surface layer. The proportion of the wave that reflects back from the oil film layer is determined. This is then related to the oil film thickness using a series of calibration experiments and a spring stiffness model. In practice, the reflected signal is difficult to distinguish, in the time domain, from other internal reflections from the pad. Signals are compared with reflections when no oil film is present and processing is carried out in the frequency domain. Experiments have been performed on a full size PTFE-faced thrust pad destined for a hydroelectric power station turbine. The instrumented pad was installed in a test facility and subjected to a range of loading conditions both with and without oil lift. Although there were some problems with the robustness of the experimental procedure, oil films were successfully measured and used to study the effect of the oil-lift system on film formation.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3