Affiliation:
1. Transilvania University of Braşov, Braşov, Romania
Abstract
This article presents the virtual prototype of the tracking system used for improving the energetic efficiency of a photovoltaic panel. From the point of view of the efficiency and safety, a polar dual-axis system has been designed. Both motions (daily and seasonal) are driven by rotary actuators, which are coupled with worm gears for blocking the system in the stationary positions. The tracking system is approached in mechatronic concept, by integrating the mechanical structure of the solar tracker and the electronic control system at the virtual prototype level. The tracking strategy aims at reducing the angular field of the daily motion and the number of actuating operations, without significantly affecting the incoming solar energy. At the same time, an algorithm for determining the optimal actuating time for the step-by-step tracking is developed. For performing the energy balance, the incident solar radiation is obtained using a method based on the direct radiation and the angle of incidence, while the energy consumption for accomplishing the tracking is determined by simulating the dynamic behaviour of the solar tracker. Finally, the validation of the simulation results is performed by comparing the virtual prototype analysis with the data achieved by experimental measurements.
Subject
Mechanical Engineering,Energy Engineering and Power Technology
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献