Simulation and Optimization of a Dual-Axis Solar Tracking Mechanism

Author:

Alexandru Cătălin1ORCID

Affiliation:

1. Department of Product Design, Mechatronics and Environment, Transilvania University of Brașov, 500036 Brașov, Romania

Abstract

The work deals with the simulation and optimization of a tracking mechanism used to increase the efficiency of photovoltaic (PV) systems. The proposed solar tracker is one with two degrees of freedom (so called dual-axis, or bi-axial), of the equatorial/polar type. The actuation of the tracking system is carried out with two linear actuators, one for each of the two movements. The study is carried out using a virtual prototyping platform that integrates, into a mechatronic concept, the commercial software packages ADAMS and EASY5. The optimization process is approached from three points of view, which target the mechanical device, the control system, and the bi-axial tracking program. All these optimization processes positively influence, in a specific way, the energy efficiency of the tracking system, which was comprehensively evaluated considering the data specific to the longest light-day of the year (i.e., summer solstice), where a net energy gain of 58.66% (by reference to the equivalent fixed system) was obtained. Similar numerical simulations corresponding to several representative days of the year have revealed that the annual net energy gain is around 42%, which fully justifies the use of the proposed tracking system.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3