Gas turbine component fault detection from a limited number of measurements

Author:

Mathioudakis K1,Kamboukos Ph1,Stamatis A1

Affiliation:

1. National Technical University of Athens Laboratory of Thermal Turbomachines, Department of Mechanical Engineering Greece

Abstract

A method for detecting faults in the components of gas turbines, based on the use of non-linear engine models and optimization techniques, is presented. The method determines deviations in mass flow capacity and efficiency of individual engine components through minimization of appropriate cost function, formulated such that measurements are matched in an optimum way. Component performance deviations are expressed through appropriate modification factors, which are used as health parameters. The modification factors are coupled to a non-linear engine performance model and can represent different health conditions of the engine. The problem of fault diagnosis is formulated as the problem of determining the values of these factors from a given set of measurement data. The novel aspect of the method presented in this paper is that it can be used to determine health factors that are less, equal or larger in number than the available performance measurements. When measurements are fewer than the parameters to be determined, solutions are derived using an approach of the maximum likelihood type. It is demonstrated than such a solution can provide successful diagnosis for the majority of fault types expected to occur in an engine. The method presented is substantiated by application to a large bypass ratio, partially mixed, turbofan, typical of the large civil aircraft engine configuration in today's aircrafts. An extensive set of component faults is studied, representing malfunctions expected to occur in practice. The method is shown to perform successfully in fault identification over this set, using a limited number of measurements representative of current onboard instrumentation.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3