Directional fractal signature analysis of trabecular bone: Evaluation of different methods to detect early osteoarthritis in knee radiographs

Author:

Wolski M1,Podsiadlo P1,Stachowiak G W1

Affiliation:

1. School of Mechanical Engineering, University of Western Australia, Crawley, Western Australia, Australia

Abstract

There is ongoing research directed towards the development of cheap and reliable decision support systems for the detection and prediction of osteoarthritis (OA) in knee joints. Fractal analysis of trabecular bone texture X-ray images is one of the most promising approaches. It is cheap and non-invasive. However, difficulties arise when the fractal signature methods are used to quantify bone roughness and anisotropy on individual scales. This is because the fractal methods are able to quantify bone texture only in the vertical and horizontal directions, and previous studies showed that OA bone changes can occur in any direction. To address these difficulties, three directional fractal signature methods were developed in this study, i.e. a fractal signature Hurst orientation transform (FSHOT) method, a variance orientation transform (VOT) method, and a blanket with rotating-grid (BRG) method. These methods were tested and the best performing method was selected. Unlike other methods, the newly developed techniques are able to calculate fractal dimensions (FDs) on individual scales (i.e. fractal signature) in all possible directions. The accuracy of the methods developed in measuring texture roughness and anisotropy on individual scales was evaluated. The effects of imaging conditions such as image noise, blur, exposure, magnification, and projection angle and the effects of translation of the bone region of interest on texture parameters were also evaluated. Computer-generated fractal surface images with known FDs and X-ray images obtained for a human tibia head were used. Results obtained show that the VOT method performs better than the FSHOT and BRG methods.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3