Fluoroscopy-based navigation system in spine surgery

Author:

Merloz P1,Troccaz J2,Vouaillat H1,Vasile C1,Tonetti J1,Eid A1,Plaweski S1

Affiliation:

1. University Department of Orthopaedic and Trauma Surgery, CHU A. Michallon, Grenoble, France

2. Equipe GMCAO - Laboratoire TIMC/IMAG (Université Joseph Fourier - CNRS UMR 5525), Institut d'Ingénierie de l'information de Santé Faculté de Médecine, La Tronche Cedex, France

Abstract

The variability in width, height, and spatial orientation of a spinal pedicle makes pedicle screw insertion a delicate operation. The aim of the current paper is to describe a computer-assisted surgical navigation system based on fluoroscopic X-ray image calibration and three-dimensional optical localizers in order to reduce radiation exposure while increasing accuracy and reliability of the surgical procedure for pedicle screw insertion. Instrumentation using transpedicular screw fixation was performed: in a first group, a conventional surgical procedure was carried out with 26 patients (138 screws); in a second group, a navigated surgical procedure (virtual fluoroscopy) was performed with 26 patients (140 screws). Evaluation of screw placement in every case was done by using plain X-rays and post-operative computer tomography scan. A 5 per cent cortex penetration (7 of 140 pedicle screws) occurred for the computer-assisted group. A 13 per cent penetration (18 of 138 pedicle screws) occurred for the non computer-assisted group. The radiation running time for each vertebra level (two screws) reached 3.5s on average in the computer-assisted group and 11.5s on average in the non computer-assisted group. The operative time for two screws on the same vertebra level reaches 10 min on average in the non computer-assisted group and 11.9 min on average in the computer-assisted group. The fluoroscopy-based (two-dimensional) navigation system for pedicle screw insertion is a safe and reliable procedure for surgery in the lower thoracic and lumbar spine.

Publisher

SAGE Publications

Subject

Mechanical Engineering,General Medicine

Cited by 95 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3