Affiliation:
1. School of Mechanical and Systems Engineering, Newcastle University, Newcastle upon Tyne, UK
Abstract
Lines of action of muscle forces imply the function and performance of muscles acting around joints. It is not always possible to determine muscle force lines of action in vivo, and so computational techniques are often used to predict them. It is common to model a muscle as a taut elastic string that follows the shortest geodesic path between attachments over the wrapping geometry. A number of studies have been concerned with wrapping paths over single wrapping objects, and those that have considered more objects have applied the single-object solutions with iterative approaches to the search for a solution. This study presents a more efficient methodology for finding the exact solutions to a certain class of wrapping problems in which the path is constrained by multiple surfaces. It also introduces a more general wrapping technique based on the idea of energy minimization, which has been successfully validated against the exact solution. These methods are applied to the case of an element of the deltoid wrapping around the humerus modelled as a composite sphere—cylinder. Comparison of results with those obtained from approximated single-object solutions demonstrates the need to include correct multi-object wrapping algorithms in biomechanical models.
Subject
Mechanical Engineering,General Medicine
Cited by
19 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献