Affiliation:
1. Department of Orthopedic Surgery, SUNY Upstate Medical University, Syracuse, New York, USA
Abstract
Previously, cement was formulated with degraded fatigue properties (subcement) to simulate long-term fatigue in short-term cadaver tests. The present study determined the efficacy of subcement in a ‘preclinical’ test of a design change with known clinical consequences: the ‘polished’-to-‘matt’ transition of the Exeter stem (revision rates for polished stems were twice those for matt stems). Contemporary stems were bead blasted to give Ra = 1 μm (matt finish). Matt and polished stems were compared in cadaver pairs under stair-climbing loads (three pairs of size 1; three pairs of size 3). Stem micromotion was monitored during loading. Post-test transverse sections were examined for cement damage. Cyclic retroversion decreased for polished stems but increased for matt stems ( p<0.0001). The implant size had a substantial effect; retroversion of (larger) size-3 stems was half that of size-1 stems, and polished size-3 stems subsided 2.5 times more than the others. Cement damage measures were similar and open through-cracks occurred around both stems of two pairs. Stem retroversion within the mantle resulted in stem—cement gaps of 50—150 μm. Combining information on cyclic motion, cracks, and gaps, it was concluded that this test ‘predicted’ higher revision rates for matt stems (it also implied that polished size-3 stems might be superior to size-1 stems).
Subject
Mechanical Engineering,General Medicine
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献