Suppression of vertical bending and rigid-body-mode vibration in railway vehicle car body by primary and secondary suspension control: Results of simulations and running tests using Shinkansen vehicle

Author:

Sugahara Y1,Kazato A2,Koganei R1,Sampei M3,Nakaura S3

Affiliation:

1. Vehicle Noise and Vibration Laboratory, Railway Technical Research Institute, Tokyo, Japan

2. Running Gear Laboratory, Railway Technical Research Institute, Tokyo, Japan

3. Department of Mechanical and Control Engineering, Tokyo Institute of Technology, Tokyo, Japan

Abstract

To improve ride comfort in railway vehicles, the suppression of vertical bending vibration and rigid-body-mode vibration in the car body is essential. In this paper, a system is proposed that aims to reduce bending and rigid-body-mode vibration simultaneously by introducing damping control devices in the primary and secondary suspensions. The technique involves a control system of primary vertical dampers and air springs; the former are used to suppress the first bending mode vibration; the latter, to suppress the rigid-body-mode vibration. The results of both simulations and vehicle running tests on the Sanyo—Shinkansen line demonstrate that this system reduced vertical vibrations in the bogies and the car body using the sky-hook control theory. In the running tests in particular, the system reduced the vertical vibration acceleration PSD peak value in the first bending mode to almost 20 per cent and in the rigid body mode to almost 50 per cent compared with the case when the system was not used. As a result, the ride quality level LT (a widely used index of ride comfort in Japan) decreased by at least 3 dB, indicating greater ride comfort.

Publisher

SAGE Publications

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3