Theoretical and computational investigation of the electrochemical machining process for characteristic cases of a stepped moving tool eroding a plane surface

Author:

Hardisty H1,Mileham A R1,Shirvani H1

Affiliation:

1. University of Bath School of Mechanical Engineering

Abstract

A theoretical and computational investigation into the electrochemical machining (ECM) process for the case of a moving stepped tool eroding an initially flat surface is presented. Five parametric variations of the basic geometry of the stepped tool machining process are possible, depending on the relative distance between the moving tool and eroded work. For each of the five cases, and based on one-dimensional theory, formulae have been developed to predict the minimum depth of working material that must initially be provided to enable a particular step size to be machined to a specified tolerance. The computer simulation of the ECM process which has been developed is based on the finite element method (FEM). The geometry of tool, electrolyte and work is simulated by means of a two-dimensional mesh of square elements. A system of macros has been developed which interact internally with an FE package to move component boundaries systematically to simulate both tool movement and surface erosion. Such boundary movements are accomplished automatically and continuously without user intervention during a simulation run. The algorithms employed to achieve characteristically different erosion rates are described. Results both from one-dimensional ECM theory and from the computer simulations of the characteristic cases are presented. Comparisons show that there is good agreement between computer predictions and theory. The differential erosion process is fundamental to all ECM processes. Complex shapes evolve because of spatial differences in erosion rates. Thus the one-dimensional results presented here for the formation of a step should provide a basis for comparisons between spatially separated regions of one-dimensional differential erosion on bodies of arbitrary shape.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of different featured tools on machining accuracy in electrochemical milling;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2019-12-19

2. 3D multiphysics model for the simulation of electrochemical machining of stainless steel (SS316);The International Journal of Advanced Manufacturing Technology;2017-12-01

3. Computational Fluid Dynamics Modeling Three-Dimensional Unsteady Turbulent Flow and Excitation Force in Partial Admission Air Turbine;Mathematical Problems in Engineering;2013

4. Two-Dimensional Tool Design for Two-Dimensional Equilibrium Electrochemical Machining Die-Sinking Using a Numerical Method;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2006-05-01

5. An integrated strategy for materials characterisation and process simulation in electrochemical machining;Journal of Materials Processing Technology;2003-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3