Two-Dimensional Tool Design for Two-Dimensional Equilibrium Electrochemical Machining Die-Sinking Using a Numerical Method

Author:

McClennan J1,Alder G1,Sherlock A1,Mill F1,Clifton D1

Affiliation:

1. Division of Engineering and Electronics, University of Edinburgh, Edinburgh, UK

Abstract

Electrochemical machining (ECM) can be defined as controlled electrolytic anodic erosion. ECM can machine hard alloys and metals with tools of softer metals, without affecting either workpiece microstructure or surface properties. There is no tool wear owing to a lack of tool/workpiece contact. The ECM medium between the tool and workpiece is electrically conductive, causing the finished workpiece geometry to vary from the tool and not to become a direct inverse of the tool shape. The characteristics of the workpiece material can also affect shape transfer, increasing the difficulty of designing and simulating ECM tools. At present, ECM tool design in industry is a trial-and-error process that can be prohibitively time-consuming. Automated design and simulation procedures are, therefore, desirable. This paper describes a computational approach to ECM tool design for two-dimensional cases based on the solution of a set of ordinary differential equations in a basis function format that are based on the electric field during the ECM process. This method has a number of advantages. It allows for the use of geometric representations of the tool and workpiece, such as B-Splines and Bèzier curves. This enables easy integration with most current computer-aided design software. It is also possible more easily to design and simulate tools for non-ideal machining conditions, where parameters such as electrolyte conductivity vary with the ECM cell. Above all, this method can design tools directly for the ECM process, given a particular workpiece shape without iterative methods. Computational trials have been carried out and compared with the results of an experimentally validated model. These showed that the method was effective for tool design under ideal machining conditions and was easier to use for non-ideal condition modelling.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design method and experimental study of a cathode tool with an extremely high leveling ratio for electrochemical machining of blisk;Chinese Journal of Aeronautics;2023-08

2. Cathode Shape Design for Steady-State Electrochemical Machining;Algorithms;2023-01-19

3. Optimal design of cathode based on iterative solution of multi-physical model in pulse electrochemical machining (PECM);The International Journal of Advanced Manufacturing Technology;2019-11-11

4. Sheet cathode design and experimental study on the electrochemical machining of deep narrow slots in TB6 titanium alloy;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2019-11-01

5. Improvement of leading-edge accuracy by optimizing the cathode design plane in electrochemical machining of a twisted blade;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;2019-07-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3