Optimal stabilization and path-following controls for a bicycle

Author:

Sharp R S1

Affiliation:

1. Department of Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, Exhibition Road, London SW7 2AZ, UK

Abstract

The article is about stabilizing and path-tracking control of a bicycle by a rider. It is based on previously published work, in which it has been shown how a driver's or rider's preview of the roadway can be combined with the linear dynamics of an appropriate vehicle to yield a problem of discrete-time optimal-linear-control-theory form. In the previous work, it was shown how an optimal ‘driver’ converts path preview sample values, modelled as deriving from a Gaussian white-noise process, into steering control inputs to cause the vehicle to follow the previewed path. The control compromises between precision and ease, to an extent that is controllable through choice of weights in the optimal control calculations. Research into the dynamics of bicycles has yielded a benchmark model, with equations of motion firmly established by extensive cross-checking. Model predictions have been verified for modest speeds by experimental testing. The established optimal linear preview stabilizing and tracking control theory is now brought together with the benchmark bicycle description to yield optimal controls for the bicycle for variations in speed and performance objectives. The resulting controls are installed in the bicycle, giving a virtual rider-controlled system, and frequency responses of the rider-controlled system are calculated to demonstrate tracking capability. Then path-tracking simulations are used to illustrate the behaviour of the controlled system. Tight and loose controls, representing different balances between tracking accuracy and control effort, are calculated and illustrated through the simulations.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Reference29 articles.

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3