Affiliation:
1. State Key Laboratory of Tribology, Tsinghua University, Beijing, People's Republic of China
Abstract
Combined influences of inter-asperity cavitation and elastic deformation of rough surfaces on flow factors were investigated based on an extended Reynolds equation for flow factor analyses. The numerical results reveal that when effect of cross-flow of lubricant is not obvious, the pressure flow factor increases, whereas the shear flow factor decreases, for a small ratio of film thickness to roughness, due to influences of inter-asperity cavitation and the elastic deformation of rough surfaces. When the ratio of film thickness to roughness becomes big, however, the influences become weak and can even be negligible. Moreover, the above influences are sensitive to the orientations of rough surfaces. Therefore, combined effects of inter-asperity cavitation and elastic deformation of rough surfaces should be considered in flow factor analyses.
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献