A mass-conserving algorithm for piston ring dynamical lubrication problems with cavitation

Author:

He Zhenpeng,Gong Wenqin,Xie Weisong,Zhang Guichang,Hong Zhenyu

Abstract

Purpose Piston ring dynamic problem plays an important role in the lubricant characteristics of a reciprocating engine, which lead to engine wear and the increased consumption of lubricating oil. A cavitation analysis of the piston ring lubrication with two-dimensional Reynolds equation has rarely been reported owing to the complex working condition. The purpose of this study is to establish a precise model that can provide guidance for the design of the piston ring. Design/methodology/approach In this paper, a cavitation model and its effect on the piston ring lubrication was studied in a simulation program based on the mass-conserving theory which is solved by means of the Newton–Raphson method. In this study, some models such as mixed lubrication, asperity contact, blow-by/blow-back flow and cavitation have been coupled with the lubrication model. Findings The established model has been compared with the traditional model that deals with cavitation by using the Reynolds boundary condition algorithm. The cavitation zone, pressure distribution and density distribution between the piston ring and the cylinder have also been predicted. Studies of the changing trend for the pressure distribution and the cavitation zone at few typical crank angles have been listed to illustrate the cavitation changing rule. The analysis of the results indicates that the developed simulation model can adequately illustrate the lubrication problem of the piston ring system. All the analyses will provide guidance for the oil film rupture and the reformation process. Originality/value A two-dimensional cavitation model based on the mass-conserving theory has been built. The cavitation-forming and -developing process for the piston ring–liner lubrication has been studied. Non-cavitation occurs in the vicinity of top dead center and bottom dead center. The non-cavitation period will be longer in the vicinity of 360° of crank angle. The density distribution in the cavitation zone can be obtained.

Publisher

Emerald

Subject

Surfaces, Coatings and Films,General Energy,Mechanical Engineering

Reference43 articles.

1. Development of a piston ring lubrication test-rig and investigation of boundary conditions for modelling lubricant film properties,1995

2. Chen, H. (2008), “Modeling of liner finish effects on oil control ring lubrication in internal combustion engines based on deterministic method”, Ph.D. thesis, Massachusetts Institute of Technology.

3. Cavitation induced starvation for piston-ring/liner tribological conjunction;Tribology International,2011

4. Investigation of cavitation development in the lubricant film of piston ring assemblies;Journal of Physics: Conference Series,2007

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3