For the Growth of 3 Inch D-Shaped GaAs Crystals by a Modified Horizontal Bridgman Process

Author:

Hsieh M H1,Chieng C C2,Lie K H3,Guo Y D3

Affiliation:

1. Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, Taiwan

2. Department of Nuclear Engineering, National Tsing Hua University, Hsinchu, Taiwan

3. Materials Research Laboratories, ITRI, Hsinchu, Taiwan

Abstract

Doped with silicon or zinc, 3 inch D-shaped GaAs crystals were grown by the modified two-temperature horizontal Bridgman (M2T-HB) technique. Then (1&10) wafers were sliced axially from the chunk of silicon-doped 3 inch GaAs crystals and chemically etched to reveal the growth striations of solid/liquid interfaces. Three-dimensional, numerical simulations of the solidification process for growing 3 inch crystals by the M2T-HB system were performed and compared with the etched (110) wafers from experiments. The heat- and mass-transfer mechanism through the melt is the combination of convection, conduction and radiation. The finite volume approach and the continuum model are employed to determine the position and shape of the interface of the solid/melt, dopant concentration and the temperature field in the crystal and melt. Two methods for computing the dopant concentration are (a) solving the transport equation of full mass concentration and (b) using the simplified model of equilibrium. The computed solidification fronts and the dopant distributions agree successfully with the experimental data, and the axial distribution of dopant concentration as well as flow and temperature fields are computed for information of the crystal quality.

Publisher

SAGE Publications

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Transient effects during the horizontal Bridgman growth of cadmium zinc telluride;Journal of Crystal Growth;1999-10

2. Flow fields and interface shapes during horizontal Bridgman growth of fluorides;Modelling and Simulation in Materials Science and Engineering;1997-05-01

3. Heat transfer—a review of 1993 literature;International Journal of Heat and Mass Transfer;1996-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3