Neural Sliding mode control of a regenerative braking system for electric vehicles

Author:

Ruz-Canul Mario Antonio1ORCID,Djilali Larbi1ORCID,Ruz-Hernández José Antonio1ORCID,Sánchez-Camperos Edgar Nelson1ORCID

Affiliation:

1. Universidad Autónoma del Carmen

Abstract

This paper summarizes the work done on the development of a Neural Sliding Mode Controller (NSMC) for a regenerative braking system used in an electric vehicle (EV), which is composed of a Main Energy System (MES) and an Auxiliary Energy System (AES). This last one contains a buck-boost converter and a super-capacitor. The AES aims to recover the energy generated during braking that the MES cannot retrieve and use later during acceleration. A neural identifier trained with the Extended Kalman Filter (EKF) has been used to estimate the buck-boost converter real dynamics and to build up the NSMC, which is implemented to regulate the voltage and current dynamics in the AES. Simulation results, illustrate the effectiveness of the proposed control scheme to track time-varying references of the AES voltage and current dynamics measured at the buck-boost converter and ensure the charging and discharging operation modes of the super-capacitor. In addition, the proposed control scheme enhances the EV storage system efficiency and performance, when the regenerative braking system is employed.

Publisher

ECORFAN

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3