Affiliation:
1. Universidad Veracruzana
Abstract
The main objective of this work is to present the methodology to control the speed of a DC motor experimentally through artificial neural networks of the NARX type (Nonlinear Autoregressive Neural Network with exogenous inputs). To achieve this, the artificial neural network was trained (ANN) on the Matlab platform, the speed of the motor was controlled in real-time with the LabVIEW software and a CompactRio data acquisition system, and it was possible for the speed of the motor to follow a constant reference, obtaining a steady state error less than 3 %.
Reference5 articles.
1. S. Haykin. (1994). Neural Networks: A Comprehensive Foundation. New Jersey. Pearson -Prentice Hall
2. Martínez-Morales, J. D., Palacios, E., & Velázquez-Carrillo, G. (2012) Modelo basado en redes neuronales artificiales de un motor de combustión interna. http://amca.mx/memorias/amca2012/paginas/Papers/0036[1].pdf
3. Quintero, C. M., Rodríguez, J. L. D., & García, A. P. (2013). Aplicación de redes neuronales al control de velocidad en motores de corriente alterna. Revista Colombiana de Tecnologías De Avanzada (RCTA), 2(20). https://core.ac.uk/download/pdf/230757259.pdf
4. Llopis, L. Diseños del sistema de control de un motor de C.C. mediante redes neuronales. Tesis de licenciatura, Universidad Politécnica de Valencia, Escuela técnica superior de ingeniería del diseño.2018.
5. Hernández-Santiago, J., Escobedo-Trujillo, B. & Garrido, J. (2021, 30 junio). A didactic platform for the study of Linear Quadratic Regulator (LQR) control for Trajectory Tracking of dc motor. Journal of Computational Systems and ICTs, 10-17. https://doi.org/10.35429/jcsi.2021.20.7.10.17.