Adaptive Array Processing based Wireless Energy Transmission for IoT Applications

Author:

Dr. Joy Chen ,Yeh Lu-Tsou

Abstract

Rechargeable energy sources are essential for the extreme deployment of Internet-of-Things (IoT) sensors with the massive growth in smart systems. In order to meet these requirements, wireless energy transmission (WET) provides demand based power to the sensors. Temporary energy storage is done using supercapacitors. This overcomes the drawback of release of hazardous wastes released by IoT connected disposables after their working life. WET is made possible through adaptive array processing. The system consists of a transmitting side with multiple antennas and a receiving side with a programmable energy harvester. Several far-field adaptive processing schemes such as conventional beamformers, multiple sidelobe canceller (MSLC), multiple beam antenna system, regenerative hybrid array, digital beamformer, and generalized sidelobe canceller are tested and compared with the proposed modified beamforming model for superior performance. As the number of antennas increases, the gain increases. Gain and cumulative distribution function are analyzed over multiple distances for multiple iterations. The received signal strength indicator (RSSI) is also estimated to validate the performance of the proposed model.

Publisher

Inventive Research Organization

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of Energy Efficient Magnitude Comparator Architecture using 8T XOR Gate;2022 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC);2022-08-17

2. Energy Generation from Bio-Waste using Normal and Chemical Decomposition Technique to Meet Power Demand in Urban Areas;2022 3rd International Conference on Electronics and Sustainable Communication Systems (ICESC);2022-08-17

3. Independent, Integrated, Reconfigurable IOT based Home Security System;2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT);2022-01-20

4. FPGA implementation of AES algorithm for high speed applications;Analog Integrated Circuits and Signal Processing;2021-11-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3