TF-IDF Vectorization and Clustering for Extractive Text Summarization

Author:

Virumeshwaran Muthu,Thirumahal R

Abstract

Extractive document summarization is a vital technique for condensing large volumes of text while retaining key information. This research introduces a dynamic feature space mapping approach to enhance extractive document summarization, aiming to succinctly encapsulate key information from extensive text volumes. The proposed method involves extracting various document properties like term frequency, sentence length, and position to comprehensively describe content. By employing a mapping function, these features are projected into a dynamic feature space, enhancing summarization efficiency and feature clarity. Clustering similar phrases in this space facilitates easier sentence grouping, aiding summary creation. Leveraging TF-IDF vectorization, the most representative phrases are chosen from each cluster based on importance and diversity. This process culminates in generating a high-quality document summary quickly and systematically. The dynamic mapping method streamlines sentence grouping, systematically capturing essential document attributes. This approach addresses challenges in extractive summarization, contributing significantly to automated text summarization. Its applicability spans domains requiring rapid extraction of information from vast textual data.

Publisher

Inventive Research Organization

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3