A Comprehensive Survey of Abstractive Text Summarization Based on Deep Learning

Author:

Zhang Mengli1ORCID,Zhou Gang1,Yu Wanting1ORCID,Huang Ningbo1ORCID,Liu Wenfen2

Affiliation:

1. State Key Laboratory of Mathematical Engineering and Advanced Computing, Zhengzhou, China

2. Guilin University of Electronic Technology, Guilin, China

Abstract

With the rapid development of the Internet, the massive amount of web textual data has grown exponentially, which has brought considerable challenges to downstream tasks, such as document management, text classification, and information retrieval. Automatic text summarization (ATS) is becoming an extremely important means to solve this problem. The  core of ATS is to mine the gist of the original text and automatically generate a concise and readable summary. Recently, to better balance and develop these two aspects, deep learning (DL)-based abstractive summarization models have been developed. At present, for ATS tasks, almost all state-of-the-art (SOTA) models are based on DL architecture. However, a comprehensive literature survey is still lacking in the field of DL-based abstractive text summarization. To fill this gap, this paper provides researchers with a comprehensive survey of DL-based abstractive summarization. We first give an overview of abstractive summarization and DL. Then, we summarize several typical frameworks of abstractive summarization. After that, we also give a comparison of several popular datasets that are commonly used for training, validation, and testing. We further analyze the performance of several typical abstractive summarization systems on common datasets. Finally, we highlight some open challenges in the abstractive summarization task and outline some future research trends. We hope that these explorations will provide researchers with new insights into DL-based abstractive summarization.

Funder

National Natural Science Foundation of China

Publisher

Hindawi Limited

Subject

General Mathematics,General Medicine,General Neuroscience,General Computer Science

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3